Abstract. Let $X$ and $Y$ be locally compact Hausdorff spaces, where $X$ is first-countable. Fix a positive integer $n \geq 3$ and a non-zero complex number $\lambda $. If a surjective map $T\colon C_{0}(X) \to C_{0}(Y)$ satisfies the condition $\sup _{y \in Y}\big |\big (\prod _{ k= 1}^{n}T(f_k)\big )(y)+\lambda \big | = \sup _{x \in X}\big |\big (\prod _{ k= 1}^{n}f_k \big )(x)+\lambda \big |$
DOI: 10.14232/actasm-017-076-5
AMS Subject Classification
(1991): 46J10; 46H40, 46J20, 47B49
Keyword(s):
function algebra,
norm-preserving,
peripheral spectrum,
weighted composition operator
Received November 30, 2017 and in final form March 21, 2018. (Registered under 76/2017.)
|